organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-Dimethyl-1,1'-[(1,3-dihydroxypropane-2,2-diyl)dimethylidene]diimidazolium bis(hexafluorophosphate)

Ai-Lin Yuan,^a Chang-Sheng Wang,^a Ling-Hua Zhuang^b and Guo-Wei Wang^a*

^aDepartment of Light Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: kingwell2004@sina.com.cn

Received 30 October 2010; accepted 17 November 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; R factor = 0.066; wR factor = 0.123; data-to-parameter ratio = 13.7.

The title compound, C₁₃H₂₂N₄O₂²⁺·2PF₆⁻, was prepared by the anion exchange of the dibromide ionic liquid with potassium hexafluorophosphate. The two imidazole rings are each planar (r.m.s. deviations = 0.0016 and 0.0060 Å) and make a dihedral angle of 45.3 (18)°. Intramolecular $O-H\cdots F$ hydrogen bonds occur. Intermolecular $C-H\cdots F$, $O-H\cdots O$ and $C-H \cdots O$ hydrogen bonds stabilize the crystal structure.

Related literature

For properties and applications of ionic liquids, see: Welton (1999). For dicationic ionic liquids, see: Liang et al. (2008); Geng et al. (2010). For the synthesis of the title compound, see: Cai et al. (2007); Cai & Liu, (2009). For bond-length data, see: Allen et al., (1987).

Experimental

Crystal data $C_{13}H_{22}N_4O_2^{2+}\cdot 2PF_6^{-1}$ $M_r = 556.29$ Orthorhombic, Pna21 a = 14.622 (3) Å b = 12.504 (3) Å c = 12.165 (2) Å

V = 2224.2 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^-$ T = 295 K $0.20 \times 0.10 \times 0.10$ mm

Data collection

Enraf–Nonius CAD-4	2152 independent reflections
diffractometer	1861 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.067$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.940, \ T_{\max} = 0.969$	reflections
4082 measured reflections	intensity decay: 1%
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.123$	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
4082 reflections	Absolute structure: Flack (1983),
298 parameters	1930 Friedel pairs
1 restraint	Flack parameter: 0.01 (16)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots F10$ $O2-H2A\cdots O1^{i}$ $C2-H2B\cdots F7^{i}$ $C13-H13B\cdots O2^{ii}$	0.82 0.82 0.93 0.96	2.32 1.97 2.41 2.54	3.001 (8) 2.787 (6) 3.261 (11) 3.186 (7)	141 175 152 125

Symmetry codes: (i) -x + 2, -y + 1, $z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, z.

Data collection: CAD-4 (Enraf-Nonius, 1989); cell refinement: CAD-4; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Foundation for Young Teachers Scholarship of Nanjing University of Technology, Jiangsu, China (grant No. 39729005), The authors thank the Centre of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2245).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Cai, Y. Q. & Liu, Y. (2009). Monatsh. Chem. 140, 39-44.
- Cai, Y. Q., Lu, Y., Liu, Y. & Gao, G. H. (2007). Catal. Lett. 119, 154-158.
- Enraf-Nonius (1989). CAD-4. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Geng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, 01267.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Welton, T. (1999). Chem. Rev. 99, 2071-2083.

Acta Cryst. (2010). E66, o3282 [doi:10.1107/S1600536810047677]

3,3'-Dimethyl-1,1'-[(1,3-dihydroxypropane-2,2-diyl)dimethylidene]diimidazolium bis(hexafluorophosphate)

A.-L. Yuan, C.-S. Wang, L.-H. Zhuang and G.-W. Wang

Comment

Ionic liquids (*ILs*) have enjoyed considerable research interests in recent years because of their unique properties (Welton, 1999). Geminal dicationic *ILs* have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional *ILs* (Liang *et al.*, 2008).

As part of our ongoing studies on new Geminal dicationic *ILs* (Geng *et al.*, 2010), we here report the crystal structure of the title compound **I**.

The atom-numbering scheme of **I** is shown in Fig. 1. There are exist intramolecular C—H···O and O—H···F hydrogen bonds, while intermolecular C—H···F, O—H···O and C—H···O hydrogen bonds stablize the crystal structure. All bond lengths are within normal ranges (Allen *et al.*, 1987). The imidazole ring is planar, with r.m.s. deviation 0.0016Å. The dihedral angles between two imidazole ring is 45.3 (18)°. There exist intermolecular C—H···F hydrogen bonds between hexafluorophosphate anions and imidazolium cations (Table 1, Fig. 1 and Fig. 2).

Experimental

A mixture of 1-methylimidazole (2.05 g, 25 mmol) and 2,2-bis(bromomethyl)-propane-1,3-diol (2.60 g, 10 mmol) were stirred vigorously at 423 K for 8 h. After cooling to room temperature, the crude product was washed with acetonitrile. The resulting solid collected by filtration was treated with water (20 ml) as well as KPF₆ (3.68 g, 20 mmol) and the reaction mixture was stirred at room temperature for 1 h. After filtration, the white solid was washed with ethanol and dried *in vacuo* to give the title compound I (5.02 g, 91%)(Cai *et al.*, 2007; Cai & Liu, 2009). M.p. 497–500 K. Crystals of I suitable for X-ray diffraction study were obtained by slow evaporation of methanol solution. ¹H NMR (*DMSO*, δ , p.p.m.) 8.96 (s, 2 H), 7.72 (d, 2 H), 7.60 (d, 2 H), 5.29 (s, 2 H) 4.24 (s, 4 H), 3.87 (s, 6 H), 3.12 (s, 4 H).

Refinement

In the both hexafluorophosphate groups, fluorine atoms have strong oscillations, while central P atoms are fixed. All H atoms were positioned geometrically, with C—H = 0.93Å, 0.96Å and 0.97Å for aromatic, methyl, methylene H, respectively. H atoms of hydroxy-groups were positioned geometrically too with O—H = 0.82Å. During refinement these H atoms were constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.2 for aromatic and methylene H atoms and x = 1.5 for methyl and hydroxyl H atoms.

Figures

Fig. 1. A view of the molecular structure of **I** showing the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.

Fig. 2. The crystal packing of **I**. Hydrogen bonds are drawn by dashed lines. Symmetry codes: (i) 2-*x*, 1-*y*, 1/2+z; (ii) -1/2+x, 1/2-y, *z*.

3,3'-Dimethyl-1,1'-[(1,3-dihydroxypropane-2,2-diyl)dimethylidene]diimidazolium bis(hexafluorophosphate)

Crystal data

$C_{13}H_{22}N_4O_2^{2+}\cdot 2PF_6^{-}$	$D_{\rm x} = 1.661 {\rm Mg m}^{-3}$
$M_r = 556.29$	Melting point = 497–500 K
Orthorhombic, <i>Pna</i> 2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 25 reflections
a = 14.622 (3) Å	$\theta = 9-13^{\circ}$
b = 12.504 (3) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 12.165 (2) Å	T = 295 K
V = 2224.2 (8) Å ³	Block, colourless
Z = 4	$0.20\times0.10\times0.10~mm$
F(000) = 1128	

Data collection

Enraf–Nonius CAD-4 diffractometer	1861 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.067$
graphite	$\theta_{\text{max}} = 25.4^{\circ}, \theta_{\text{min}} = 2.1^{\circ}$
ω/2θ–scans	$h = 0 \rightarrow 17$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 15$
$T_{\min} = 0.940, \ T_{\max} = 0.969$	$l = -14 \rightarrow 14$
4082 measured reflections	3 standard reflections every 200 reflections
2152 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.123$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
4082 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
298 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
1 restraint	Extinction coefficient: 0.105 (11)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1930 Friedel pairs
Secondary atom site location: difference Fourier man	Elack parameter: 0.01 (16)

Secondary atom site location: difference Fourier map Flack parameter: 0.01 (16)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8641 (3)	0.5204 (5)	0.2865 (3)	0.119 (2)
H1A	0.8104	0.5362	0.2756	0.179*
N1	1.0848 (6)	0.8302 (5)	0.4610 (6)	0.103 (2)
C1	1.1347 (5)	0.9027 (6)	0.5270 (7)	0.123 (3)
H1B	1.1127	0.9740	0.5144	0.185*
H1C	1.1983	0.8989	0.5082	0.185*
H1D	1.1268	0.8845	0.6030	0.185*
02	1.0931 (3)	0.4708 (3)	0.5634 (3)	0.0826 (14)
H2A	1.1025	0.4740	0.6298	0.124*
N2	1.0515 (4)	0.6773 (4)	0.3942 (5)	0.0724 (16)
C2	1.1092 (6)	0.7153 (6)	0.4672 (6)	0.092 (3)
H2B	1.1525	0.6804	0.5101	0.111*
N3	0.9585 (3)	0.2977 (4)	0.4254 (4)	0.0595 (13)
C3	1.0013 (6)	0.7562 (7)	0.3474 (7)	0.101 (2)
H3A	0.9577	0.7467	0.2927	0.121*
N4	0.8598 (4)	0.1738 (4)	0.4570 (4)	0.0708 (15)

C4	1.0258 (6)	0.8556 (7)	0.3952 (8)	0.098 (3)
H4A	1.0027	0.9233	0.3801	0.117*
C5	1.0500 (4)	0.5689 (4)	0.3557 (5)	0.0593 (15)
H5A	1.1108	0.5385	0.3631	0.071*
H5B	1.0342	0.5684	0.2783	0.071*
C6	0.9823 (3)	0.4998 (4)	0.4183 (4)	0.0402 (12)
C7	1.0003 (4)	0.4992 (5)	0.5411 (4)	0.0649 (16)
H7A	0.9877	0.5695	0.5712	0.078*
H7B	0.9598	0.4484	0.5765	0.078*
C8	0.8832 (3)	0.5271 (5)	0.3995 (4)	0.0580 (15)
H8A	0.8445	0.4778	0.4398	0.070*
H8B	0.8709	0.5990	0.4257	0.070*
C9	1.0043 (4)	0.3873 (4)	0.3704 (5)	0.0637 (15)
H9A	0.9872	0.3866	0.2934	0.076*
H9B	1.0698	0.3760	0.3744	0.076*
C10	0.9922 (5)	0.2325 (5)	0.5067 (5)	0.0652 (19)
H10A	1.0493	0.2387	0.5397	0.078*
C11	0.9291 (5)	0.1587 (6)	0.5303 (6)	0.081 (2)
H11A	0.9320	0.1074	0.5855	0.098*
C12	0.8786 (4)	0.2570 (4)	0.3921 (5)	0.0599 (16)
H12A	0.8428	0.2821	0.3344	0.072*
C13	0.7815 (5)	0.1020 (6)	0.4552 (6)	0.109 (3)
H13A	0.7397	0.1243	0.3988	0.164*
H13B	0.7513	0.1040	0.5252	0.164*
H13C	0.8019	0.0305	0.4404	0.164*
P1	0.72571 (13)	0.35606 (18)	0.68464 (19)	0.0911 (6)
F1	0.7669 (3)	0.4744 (3)	0.6875 (5)	0.1535 (18)
F2	0.6868 (3)	0.2424 (3)	0.6720 (5)	0.1459 (18)
F3	0.6246 (3)	0.4001 (4)	0.6840 (4)	0.1420 (16)
F4	0.7290 (3)	0.3498 (5)	0.8136 (3)	0.151 (2)
F5	0.7254 (4)	0.3651 (4)	0.5546 (4)	0.140 (2)
F6	0.8266 (2)	0.3132 (4)	0.6825 (5)	0.1478 (18)
P2	0.64385 (14)	0.33975 (18)	0.1878 (2)	0.0992 (7)
F7	0.7457 (4)	0.3277 (4)	0.1659 (6)	0.179 (2)
F8	0.6282 (7)	0.3840 (8)	0.0811 (7)	0.355 (7)
F9	0.6598 (5)	0.3032 (5)	0.3039 (4)	0.220 (3)
F10	0.6708 (5)	0.4574 (5)	0.2350 (7)	0.238 (4)
F11	0.6079 (10)	0.2399 (7)	0.1625 (8)	0.390 (8)
F12	0.5486 (5)	0.3672 (9)	0.2204 (9)	0.314 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.069 (3)	0.240 (6)	0.049 (2)	0.047 (4)	0.006 (2)	0.014 (3)
N1	0.109 (6)	0.068 (5)	0.131 (6)	-0.036 (5)	0.018 (5)	-0.028 (4)
C1	0.117 (7)	0.105 (6)	0.147 (8)	-0.006 (6)	0.008 (7)	0.006 (6)
O2	0.054 (3)	0.125 (4)	0.069 (3)	0.022 (3)	-0.011 (2)	-0.016 (3)
N2	0.065 (4)	0.067 (4)	0.086 (4)	-0.006 (3)	0.021 (3)	-0.005 (3)

C2	0.090 (6)	0.085 (6)	0.102 (6)	-0.023 (5)	0.021 (5)	-0.031 (5)
N3	0.063 (3)	0.050 (3)	0.066 (3)	-0.011 (3)	-0.019 (3)	-0.010 (3)
C3	0.085 (6)	0.110 (6)	0.108 (6)	-0.009 (6)	0.028 (5)	-0.005 (6)
N4	0.061 (3)	0.087 (4)	0.065 (3)	-0.029 (3)	-0.006 (3)	0.009 (3)
C4	0.077 (6)	0.100(7)	0.116 (8)	0.008 (5)	0.038 (5)	0.012 (6)
C5	0.053 (3)	0.053 (3)	0.071 (4)	0.004 (3)	0.009 (3)	0.004 (3)
C6	0.047 (3)	0.036 (2)	0.037 (3)	-0.012 (3)	-0.006 (3)	0.005 (2)
C7	0.061 (4)	0.092 (4)	0.042 (3)	0.000 (3)	-0.003 (3)	-0.020 (3)
C8	0.047 (3)	0.087 (4)	0.041 (3)	0.021 (3)	0.004 (3)	0.015 (3)
C9	0.068 (4)	0.075 (4)	0.048 (3)	-0.007 (4)	0.005 (3)	-0.002 (3)
C10	0.071 (5)	0.052 (4)	0.072 (5)	-0.003 (4)	-0.016 (4)	0.005 (3)
C11	0.087 (5)	0.089 (5)	0.069 (5)	0.014 (5)	-0.003 (4)	0.004 (4)
C12	0.067 (4)	0.025 (2)	0.088 (4)	-0.004 (3)	-0.020 (4)	0.001 (3)
C13	0.077 (5)	0.133 (7)	0.118 (6)	-0.067 (5)	-0.007 (4)	-0.008 (5)
P1	0.0748 (13)	0.1251 (16)	0.0734 (12)	-0.0271 (12)	-0.0068 (14)	-0.0219 (14)
F1	0.166 (4)	0.136 (3)	0.159 (4)	-0.059 (3)	-0.010 (4)	-0.044 (4)
F2	0.170 (4)	0.120 (3)	0.148 (4)	-0.072 (3)	-0.012 (4)	-0.026 (4)
F3	0.077 (3)	0.234 (5)	0.116 (3)	-0.002 (3)	-0.004 (3)	0.021 (4)
F4	0.117 (4)	0.264 (7)	0.073 (3)	0.014 (4)	0.002 (3)	-0.007 (4)
F5	0.135 (5)	0.198 (6)	0.087 (4)	-0.029 (4)	0.016 (3)	0.012 (3)
F6	0.067 (3)	0.206 (5)	0.170 (4)	0.001 (3)	-0.014 (4)	-0.073 (4)
P2	0.0872 (16)	0.1174 (17)	0.0929 (15)	-0.0272 (13)	-0.0190 (16)	0.0416 (15)
F7	0.130 (5)	0.235 (6)	0.171 (5)	-0.026 (4)	0.038 (5)	-0.041 (6)
F8	0.375 (14)	0.489 (14)	0.201 (8)	-0.219 (11)	-0.182 (9)	0.238 (9)
F9	0.263 (8)	0.293 (8)	0.104 (5)	-0.080(7)	-0.052 (5)	0.083 (5)
F10	0.206 (7)	0.153 (5)	0.355 (12)	-0.041 (5)	0.034 (7)	0.001 (7)
F11	0.70(2)	0.233 (7)	0.241 (9)	-0.308 (11)	0.025 (13)	-0.029 (8)
F12	0.111 (5)	0.491 (15)	0.340 (14)	0.080(7)	-0.002 (6)	0.009 (12)

Geometric parameters (Å, °)

1.406 (6)	C6—C7	1.518 (7)
0.8200	С6—С9	1.556 (8)
1.219 (9)	С7—Н7А	0.9700
1.413 (9)	С7—Н7В	0.9700
1.482 (10)	C8—H8A	0.9700
0.9600	C8—H8B	0.9700
0.9600	С9—Н9А	0.9700
0.9600	С9—Н9В	0.9700
1.428 (7)	C10-C11	1.336 (8)
0.8200	C10—H10A	0.9300
1.314 (8)	C11—H11A	0.9300
1.354 (9)	C12—H12A	0.9300
1.434 (6)	C13—H13A	0.9600
0.9300	C13—H13B	0.9600
1.338 (6)	C13—H13C	0.9600
1.372 (7)	P1—F2	1.538 (4)
1.467 (7)	P1—F6	1.570 (4)
1.419 (11)	P1—F4	1.572 (4)
	1.406(6) 0.8200 1.219(9) 1.413(9) 1.482(10) 0.9600 0.9600 0.9600 1.428(7) 0.8200 1.314(8) 1.354(9) 1.434(6) 0.9300 1.338(6) 1.372(7) 1.467(7) 1.419(11)	1.406(6) $C6-C7$ 0.8200 $C6-C9$ $1.219(9)$ $C7-H7A$ $1.413(9)$ $C7-H7B$ $1.482(10)$ $C8-H8A$ 0.9600 $C9-H9A$ 0.9600 $C9-H9A$ 0.9600 $C9-H9B$ $1.428(7)$ $C10-C11$ 0.8200 $C10-H10A$ $1.314(8)$ $C11-H11A$ $1.354(9)$ $C12-H12A$ $1.434(6)$ $C13-H13B$ $1.338(6)$ $C13-H13B$ $1.372(7)$ $P1-F2$ $1.467(7)$ $P1-F6$ $1.419(11)$ $P1-F4$

С3—НЗА	0.9300	P1—F3	1.578 (4)
N4—C12	1.335 (7)	P1—F5	1.586 (5)
N4—C11	1.363 (8)	P1—F1	1.598 (4)
N4—C13	1.454 (7)	P2—F11	1.390 (6)
C4—H4A	0.9300	P2—F8	1.429 (6)
С5—С6	1.519 (6)	P2—F12	1.489 (7)
С5—Н5А	0.9700	P2—F9	1.503 (5)
С5—Н5В	0.9700	P2—F7	1.521 (6)
C6—C8	1.506 (6)	P2—F10	1.628 (6)
C8—O1—H1A	109.5	H8A—C8—H8B	108.3
C4—N1—C1	124.8 (9)	N3—C9—C6	115.2 (4)
C4—N1—C2	117.1 (8)	N3—C9—H9A	108.5
C1—N1—C2	118.0 (8)	С6—С9—Н9А	108.5
N1—C1—H1B	109.5	N3—C9—H9B	108.5
N1—C1—H1C	109.5	С6—С9—Н9В	108.5
H1B—C1—H1C	109.5	Н9А—С9—Н9В	107.5
N1—C1—H1D	109.5	C11—C10—N3	108.5 (6)
H1B—C1—H1D	109.5	С11—С10—Н10А	125.8
H1C—C1—H1D	109.5	N3—C10—H10A	125.8
С7—О2—Н2А	109.5	C10-C11-N4	106.1 (6)
C2—N2—C3	111.6 (7)	C10—C11—H11A	126.9
C2-N2-C5	124.9 (6)	N4—C11—H11A	126.9
C3 - N2 - C5	122.9 (7)	N4—C12—N3	107.3 (5)
N2-C2-N1	99.3 (7)	N4—C12—H12A	126.4
N2—C2—H2B	130.3	N3-C12-H12A	126.4
N1-C2-H2B	130.3	N4—C13—H13A	109.5
$C_{12} - N_{3} - C_{10}$	107.8 (5)	N4—C13—H13B	109.5
C12 - N3 - C9	123 4 (5)	H13A—C13—H13B	109.5
C10—N3—C9	128.2 (5)	N4—C13—H13C	109.5
N2-C3-C4	109.2 (8)	H_{13A} $-C_{13}$ $-H_{13C}$	109.5
N2—C3—H3A	125.4	H13B-C13-H13C	109.5
C4—C3—H3A	125.4	F2P1F6	91.8 (3)
C12—N4—C11	109 9 (6)	F2—P1—F4	93 7 (3)
C12 - N4 - C13	129.4 (6)	F6—P1—F4	88 3 (3)
C11—N4—C13	120.7 (6)	F2P1F3	88.6 (3)
N1-C4-C3	102.7(9)	F6—P1—F3	178 7 (4)
N1—C4—H4A	128.7	F4—P1—F3	92.9 (3)
C3-C4-H4A	128.7	F2P1F5	88.0(3)
N^2 —C5—C6	112.6.(4)	F6—P1—F5	90.6 (3)
N2_C5_H5A	109.1	F4P1F5	178.0(3)
C6—C5—H5A	109.1	F3P1F5	88 1 (3)
N2-C5-H5B	109.1	F2—P1—F1	175 5 (4)
С6—С5—Н5В	109.1	F6—P1—F1	87.8 (3)
H5A—C5—H5B	107.8	F4	90.8 (3)
C8—C6—C7	108.5 (4)	F3—P1—F1	91.7 (3)
C8—C6—C5	114.9 (4)	F5—P1—F1	87.5 (3)
C7—C6—C5	112.5 (4)	F11—P2—F8	95.0 (6)
C8—C6—C9	110.3 (4)	F11—P2—F12	84.9 (6)
C7—C6—C9	109.2 (4)	F8—P2—F12	90.2 (6)
	· · · · · · · · · · · · · · · · · · ·		

C5—C6—C9	101.1 (4)	F11—P2—F9	89.6 (5)
O2—C7—C6	110.6 (4)	F8—P2—F9	174.9 (6)
O2—C7—H7A	109.5	F12—P2—F9	88.0 (5)
С6—С7—Н7А	109.5	F11—P2—F7	104.1 (7)
O2—C7—H7B	109.5	F8—P2—F7	92.1 (5)
С6—С7—Н7В	109.5	F12—P2—F7	170.5 (5)
H7A—C7—H7B	108.1	F9—P2—F7	88.9 (4)
O1—C8—C6	109.0 (4)	F11—P2—F10	169.1 (6)
O1—C8—H8A	109.9	F8—P2—F10	90.5 (5)
C6—C8—H8A	109.9	F12—P2—F10	85.6 (5)
O1—C8—H8B	109.9	F9—P2—F10	84.6 (4)
С6—С8—Н8В	109.9	F7—P2—F10	85.1 (3)
C3—N2—C2—N1	1.7 (7)	C7—C6—C8—O1	-175.8 (5)
C5—N2—C2—N1	173.0 (5)	C5—C6—C8—O1	57.2 (7)
C4—N1—C2—N2	-1.5 (9)	C9—C6—C8—O1	-56.3 (6)
C1—N1—C2—N2	-178.1 (6)	C12—N3—C9—C6	93.2 (6)
C2—N2—C3—C4	-1.6 (9)	C10—N3—C9—C6	-96.3 (7)
C5—N2—C3—C4	-173.1 (6)	C8—C6—C9—N3	-66.1 (6)
C1—N1—C4—C3	177.0 (7)	C7—C6—C9—N3	53.0 (6)
C2—N1—C4—C3	0.6 (10)	C5-C6-C9-N3	171.8 (5)
N2-C3-C4-N1	0.5 (9)	C12—N3—C10—C11	-6.0(7)
C2—N2—C5—C6	95.0 (7)	C9—N3—C10—C11	-177.7 (6)
C3—N2—C5—C6	-94.7 (7)	N3-C10-C11-N4	4.7 (8)
N2-C5-C6-C8	68.1 (6)	C12—N4—C11—C10	-1.8 (8)
N2-C5-C6-C7	-56.8 (6)	C13—N4—C11—C10	176.3 (6)
N2-C5-C6-C9	-173.2 (5)	C11—N4—C12—N3	-1.8 (7)
C8—C6—C7—O2	178.5 (5)	C13—N4—C12—N3	-179.7 (6)
C5—C6—C7—O2	-53.2 (6)	C10—N3—C12—N4	4.7 (7)
C9—C6—C7—O2	58.2 (6)	C9—N3—C12—N4	176.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С5—Н5В…О1	0.97	2.56	2.910 (7)	101
С9—Н9А…О1	0.97	2.46	2.831 (8)	102
O1—H1A…F10	0.82	2.32	3.001 (8)	141
O2—H2A···O1 ⁱ	0.82	1.97	2.787 (6)	175
C2—H2B…F7 ⁱ	0.93	2.41	3.261 (11)	152
C13—H13B···O2 ⁱⁱ	0.96	2.54	3.186 (7)	125
	1/0			

Symmetry codes: (i) -x+2, -y+1, z+1/2; (ii) x-1/2, -y+1/2, z.

Fig. 2